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ABSTRACT

It is known that the finite dimensional extensions of a symmetric

operator define extremal spectral functions of the operator. Finite dimensional

extensions exist, however, only for symmetric operators with equal deficiency

indices. In this report it is shown that self adjoint extensions defined by

the addition of maximal symmetric operators determine extremal spectral

functions for a symmetric operator with unequal deficiency indices.



EXTREMAL SPECTRAL FUNCTIONS OF A SYMMETRIC OPERATOR

Richard C. Gilbert

1. Spectral functions of a symmetric operator.
Let H I be a symmetric operator in a Hilbert space If H

is a self adjoint operator in a Hilbert space such that iC and

H C H, then H is called a self adjoint extension of HI.

Suppose H is a self adjoint extension of H . If E(X) is the

spectral function of H and if P1 is the operator in of orthogonal

projection on 1 ' then the operator function E,(%) PE(X) restricted

to I1 is called a spectral function of H 1. We shall say that the self

adjoint extension H defines the spectral function E1(%) . There are in

general many spectral functions, since there are in general many different

self adjoint extensions. (The spectral functions of H can also be

characterized without going out of the space 0 1" ee Achieser and

Glasmann [1] and M. A. Naimark [4].) If = , then E1(X) is

called an orthogonal spectral function of H1

The family of spectral functions of H is a convex set, i. e.
I I? I I!

if EI(X) and E1 (X) are spectral functions of Hl, and if i± ,p. are

non-negative real numbers such that p. + p. 1 , then E 1 (k) +p. El(1)

is also a spectral function of H A spectral function EI(X) of H1 is

said to be an extremal spectral function if it is impossible to find two

different spectral functions E1(P) , E1 (X) and positive real numbers

Sponsored by the Mathematics Research Center, U. S. Army, Madison,
Wisconsin, under Contract No. DA-11-OZZ-ORD-2059.
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p., such that El( ) = W'E1(%) + ý"El''(X)

It is the purpose of this report to identify some extremal spectral

functions of HI. Extremal spectral functions are of interest because it is

often possible to construct the whole convex set from them.

# denotes the end of a proof.

2. Hermitian operators

In this section we collect some information about Hlermitian operators.

Proofs are omitted because they are either direct verification or else are the

same as for a symmetric operator. (See [ 1].)

Definition 1. The linear operator H in the Hilbert space is

Hermitian if (Hf, g) = (f, Hg) for all f, g E /i(H) . An operator H is

symmetric if it is Hermitian and ,2.(H)

Definition Z. If H is Hermitian, we define the linear manifolds

"7• (\)andA (X) by the equations (X)=R(A- XE) and t(%) =

S( ®L (X) . "2'(X) is a subspace and is called a deficiency subspace

of H.

Theorem 1 -11?(k) has the same dimension for all X in the same

half-plane (i.e, IX > 0 or ID <0).

Definition 3. If X is a non-real number, let m dim1?(X)

n = dim -M(k) . Then, (m, n) are called deficiency indices of H

(with respect to X.)

Theorem 2. If H is Hermitian and I 0 0, then
-i

(1) (H - XE) exists and is bounded;

(2) U(X) = (H -KE)(H - XE) is an isometry mapping £ onto C(),;
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(3) (U(X) - E) exists, and H = (XU(X) --XE)(U(X) - E)

U(X) is called the Cayley transform of H.

Theorem 3. Let U be an isometric operator in . Suppose

that (U - E) exists. Then, if IN 0 0, there exists a Hermitian operator

H such that U= U(X) . In fact, H = (XU -XE)(U - E)

Theorem 4. For fixed X, IX 0 0, the correspondence H "U(X)

between a Hermitian operator and its Cayley transform is a one-one

correspondence between the set of Hermitian operators H and the set of
-1

isometric operators U for which (U - E) exists.

Theorem 5. If HIr UI(X), Hzz Uz(X) , then H1C H if and only

if UI(X) CU )

Theorem 6. H is closed U(X) is closed

L (X) and vC (T) are subspaces in Ii.
Remark. If H is closed and IX 0 0, then o.) = () - M' (X)

Theorem 7. If H is a closed Hermitian operator with deficiency

indices (m, n) (with respect to X) , -H is a closed Hermitian operator

with deficiency indices (n, m) (with respect to X.)

Theorem 8. A subspace •i reduces H 1 reduces U(X)

If • = ® l and H. is H restricted to while U.(AX) is U(X)

is restricted to H., then H, and HZ are Hermitian operators, H., "" U.(X)

H= H-1 H.2 , and U(X)= U ( D) Uz(® )
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In all that follows X will be a fixed non-real number. Hence, we

shall often write the Cayley transforms of H as U rather than U(X)

3. Self adjoint extensions of a symmetric operator.

The following theorem, due to M. A. Naimark [4], characterizes the

self adjoint extensions of a symmetric operator.

Theorem 9. Let X be any fixed non-real number. Let H be a

closed symmetric operator with deficiency indices (mi, n,) (with respect

to X) . Then every self adjoint extension H of H is obtained as follows:

(1) Let H 2 be a closed Hermitian operator in 2 with deficiency

indices (m 2 , n2 ) (with respect to X ) satisfying mI + m2 = n + n2 m 2 < n

(Z) Let H0 H1 ( H2 in iD (H 0 is therefore a closed

Hermitian operator with equal deficiency indices (miI + mZ, n, + n2 ) , and if

H -i'Ui, i = 0, i1,2, then U0  U1 ® U2 . Further, 't0(-%)= (- ( X),

(3) Let V be an arbitrary isometric operator mapping 1 0 (X) onto

satisfying the condition 9 E 712(-), V9 E implies 9 = 0.

(4) Let J (H) be defined as all g = f + V9 - 4 , ,where f c .49 (H 0

(5) If g E (H), let Hg = H0f + XV9 -_Xý.

Then, H is a self adjoint extension in of H1 , and every self adjoint

extension of H is obtained in this way. We have that ,2 (H) = H) Z
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Definition 4. We say that H - and V of theorem 9 define the

self adjoint extension H

Remark 1. What has been really done in theorem 9 is that V has

been used to extend the Cayley transform U0 to a unitary operator
0

U= U e V. The condition on V in (3) of theorem 9 allows us to show
0

that* (U - E) is dense in and therefore U is the Cayley. transform

of a self adj6int operator H. (H) and H can be shown to be determined

'as in (4) and (5). Since U1 C U,•H C H.

The condition on V also serves another purpose: It allows us to

say that U (and therefore H) is not reduced by 1 provided min #0 or

n # 00.

Remark Z. We can put the operator V into correspondence with a
matrix (V.) of operators such that V :M (T) -Lk"(X) IVX :)z(-X)-•l1z ),

V z: (X-)-1z 2M) ,VZZ :kZ(X-) - (). The condition on V in (3) of

theorem 9 then becomes V1 2 p 0 implies qp 0. Further,

9(HI {g Ig =f1 - 9++V 1 1+Vz2 2z+ fz - +z+V?191

+ V2 2 ,Z2 where f, E• (H!) f E A 2•1H1 /

9 2 E '??(X)}
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If g E ,3(H)

Hg-Hf -X-P. +X(VII•I +Vl Z~).+HZfZ'--\, +%(V •1 +V )( •
1 1 11 1 2 211 z 22

Remark 3. If H is .a closed symmetric operator with deficiency1

indicies (ml, nl) *and if H is a closed Hermitian operator with deficiency

indicies (m ,.n) such that m + m = n + n and m2 < nI, then there
2 2.. 2 2 Z

always exists an. isomet ry V offl(-) ®1(k-) onto "fljN) ® "2 (k)

satisfying the condition that ( E "•Z(•)• VI ' () implies p= 0. For,

let V map :(X) isometrically onto a subspace M'lj\) of '.l(X) and

li'tl(-) isometrically onto [I'M(M). G hl(X)] (m I -&m (X)

We now give a theorem which gives a more detailed analysis of the

structure of V.

Theorem 10. Suppose that ml "1T (T), "bZ(X),'MZ(X) are

Hilbert spaces and that V is an isometry which maps (-) ( 7"2(-)

onto Xi(X) ( Y•z(X) . (Note that X has nothing to do with the theorem

and is retained only as a~notational convenience.) If V (V ik) in matrix

form.(note that each Vik is bounded by 1 ), suppose that V1 2p = 0 implies

.that q = 0. Then the following conclusions are true:

(1) If ).(X) is defined by the equation X) = [V )•(K)
( c indicates closure of a set) and if '7l 1 (X) is defined by

"X) = Xl). G l) then (X) is the null space of V 12 Thus,
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V. is one-one on 1l(X) Further, [VIz? 1 (X)] 0 •

(a) V V maps 1•l(x) onto a, subspace of M7 ( which we
"denote by 17 Thus, • l(-) V(l(X) (X) V 27(-)

(3) If �l-X) is defined by the equation P- l() = "i(-) ®Y (-),
11 1 1

then. V maps 7l(X) ® 2'Z(-) isometrically onto (X) (D•()e M

Thus, V 1 1  t()-

(4) V21 is one-one oft •'-l-) and ' 1 (T) is the null space of VZI

•~c
(5) V is one-one on XA' (X) and ! ; X)= [V p

21 a 2

(6) If mI= dim 'M I (T) , nI = dim 1 (X) m2 = dimIZ (T) ,nZ=dimT(X)

then m1 + mZ = n1 + n , mZ= dim Z(X) = dim•'1lý ) < nI(

nZ = dimht Z (X) dim •l-k I < mI.*

(7) If mZ = n , mI = nI.

We may conveniently summarize the theorem by means of the following

picture:
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"MI-X, m ••ik'n

V =V

v /

null space of V null spade of V

v 1,,[ V.2L M .2 ( T )

I (,m 2 + m =m In

2a 2

mm <fl

m < n1
2- 1

n < m
. -
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Proof (1) -•l N) is the null space of V"2 ; for, f E '!(k)

(f, V• 2 g) 0 for all g EI '(X) (V f g) 0 for all g E ()

" 12 f
V Ft (-X) - for, suppose g E ,gJv) (T u( ).

2X [-FrijXII~ zVz'2(X)

Then, (g, Vl f)= 0 for all f E'1L(K) ,or.( Vlg, f) = 0 for, all f E' 1 l().

Therefore, V1 2 g = 0, and g = 0 since V is one-one.

(2) V= V 1 maps (X) onto a subspace of'-Yl(-K); for

V V
11 21

V

V12 V22

Hence, V_ (K) = v 1 1 (•)h C lyt (T)

(3) Clear, since - (K) = v'1 (-)

(4) V is one-one on '1l(X) ; for, suppose f E •TI(-1) V 21f = 0.

Then,.Vf=V 1f+V zf=V= f•I fE -•(K). Let g=V 1f=Vf, sothat

11 21 11 1 11f=Vg=Vllg+Vizg. Tesince 1 J~(K) , V' 1 g E )%](-x) ,Vlz ,

ThenfE' 4) ( 12g) 2(x)

we have that Vg = 0. Since g E (X) by(l) g=O. Thus, f=V g = 0.

"I~l(T) is the null space of VI; -for, Wh/ (K) = V•(l W) and thus

Vzlf = 0 for all- f E•I(X). On the other hand, Vzi is one-one onl'-• 1 l(-).
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SV li'tU ( X)C1 (l(-) ; for, if f 2'I(-X) ,(f,2V1g) =(V 2lf,g)=0,

since N'l(\) is the null space of V Thus,1l. (-) I. V '1kic()
1 21 1 21

* and therefore V (K) C 1l(-K).•
.21 2 1

M = [V 2  I(-)]c for, suppose g Ei)1(k) andi-iz zi P)(c)

g.LV (T . Therefore, 0 (V2 lf, g) - (f, Vzig) for all f E( .

Since VlW N(K)C -(-), V- g= 0. Thus, V g=V-g g•"n (T).
21 2 1 21 22 2

Let f V g. Then, g =Vf= VI f + Vzf, where g l 2  ), V f E-'5 (K),
12 2X 12. 1

V f (•12(k) . Therefore, Vl2f 0 and f 0. Whence, g = Vf = 0.
22. 2 1

(5) V is one-one on 'bt (K) ; for, suppose Vlf = 0 Then,
21 2 21

0= (V 1 f, g) = (f, V g) for all g E I(() . Therefore, f IVzl 1 (X)

and f= 0 by (4).

[Vl M I( ) ; for, suppose f E 7T ,fX i V* 1 l h( )

Then, 0= (f, V2 1 g) = (V 2 1f, g) for all g ETh{2(K). Therefore

V ff= 0, and f =0 since V is one-one onTl-. (T.

(6) mI + m = nI + n follows from the fact that V maps

[i(-)X (• -<)isometrically onto 'nl M G(" )
1I

dim •'Mf(-) = dim 1 (K) ; for, let {q} be a complete

orthonormal system in I'nZ (-) . Then {Vz12 q} is a fundamental set in

•' l(K) . (See Nagy [3] for definitions. ) Therefore dim (-)

P {1ý} = P{V ipo} > dim 'il(K) , where P stands for cardinality. Similarly,
1d1

using)f (K)im> dim~ (X). Thus, m =dim<7 (X) dim'h? <usn 12 i 1 - 2 2 1
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Similarly, using V and V n .(X) dim/ (T) <

.,(7) Clear from (6). #

Definitioh 5. A self adjoint extension H in of a symmetric

operator H in • 1 is said to be minimal if H is not reduced by

nor by any of its subspaces different from zero.

Theorem 11. (M.A. Naimark [4]) For each self adjoint extension

H in of a symmetric operator H1 in •i there exists a minimal

self adjoint extension H0 in • 0 such that

(2) H C H C H

(3) H-0 and H define the same spectral function of HI

Theorem 1 2. Suppose that HI is a closed symmetric operator

and that H2 and V define a self adjoint extension H of H I. Let

H0 be a self adjoint extension of HI having the properties that

C C < C and H1 C H0 C H. Then the following statements

are true:

(1) If we write (D i '3' • '0 ® '4 'i 6 3 4

f•Z : F3 , then H is reduced by and H = H0 ( H4, where

H4 is a self adjoint operator in 4"

(2) CC -( O .2•2( ) C • 3 22 (X) C 3"
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(3) H is reduced by 4 andH=H3 (DH4 , where H3 is

a closed Hermitian operator in , 3 with the same deficiency subspaces

.. )P(x as H.

(4) H is definedby H and V.0 3-

(5) H and H define the same spectral function of H.

Proof. 'Since HI C H C H, we have by theorem 5 thatsom. isrnm.

U 1 CJ U. Since U0 : 0 0 anono

isom.
we must have that U :nto Thus reduces U, and

by theorem 8, U =U 0 ( U4 , H = H0 ®D H4 , where H4 is-a self adjoint

operator in F4 with Cayley transform U4 . This proves (1)

We claim now that C - Let f E C

Since 2= ) ' f = ft + fit, where f' 2 (T-)

f"t (E ) . Hence, Uf = Uf' + Uf= V+ Uzf"i= V1zf' + V 2f, + U fit

where Uf E f4C ýJ'2Z U2 ft' E L C Vf L'(X) C V E 7l'

Vf22f V E 2(X) C •2 Thus, Vl2f' = 0 and therefore f = 0 by theorem 9.

We have, then, that f= f" E LZc(T) andihence '4 C 1Z(x)
• isom.

Since 4 C Z (-M) while U 4 and
isorn.
onto

U 2 -2 (X) , it follows that 4 (X) . By the preceding

paragraph and what we have just proved, I 4 C XL2(\) n• .(X) This

proves (Z)
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isom= -- v -• ono
Since U U on L (X) , U : (X) OfltO• (X) and

2 .2 .2 2-~ISOM.

U •Z ' onto_> Thus, f4 reduces U andUQ ,
U anddcs U U()t

isom.
where )3 : •, °onto (k) ® We note that

3 2' .- (j4:where (X 4, Z (X) 2,-- z 4

"0-4]- ) [ (K)' D- ence,

by theorem 8, HZ H3 0 H4 where H is a closed Hermitian operator

in with. Cayleytransform U3 and deficiency subspaces "W( M

?a(K) . This proves .(3).
2

*By theorem 9, H and V define a self adjoint extension HI of
3 0

H in 0 • . The Cayley-transform U' of HI is given by
S 1 (3 0 0

U1 U on (T) V = U on Thl(T) 01'7(-T and U 3 U on

S( ) 7- Gx)'3 Since i( D and f3, I'Y7(-) (

[ t.(-x) G U4 ],U=.U on I-l0.3= I0" But since U C U,

U= Uon. on ThusU = U and H, sothatH is
0~ ýl~ 3 . 00

defined by H3 and V. This proves (4).

As we have shown, H H0 ( H 4 . Thus', E(K) = E0 (D) ® E4 ( )

and therefore E(k)f = E (.X)f for all f E " If P is the operator of
.0

oirthogonal projection of' onto, and if P is the operator of

orthogonal projection of 0 onto i ' PE(X) f = PE6K)f = P 0 E0(X)f for all0 0
f E 1' so that H and H0 define the same spectral function of H.

T0

This proves (5) #
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Theorem 13. Let H be a minimal self adjoint extension of

the closed symmetric operator H . Suppose that for any bounded

self adjoint operator A in - with matrix representation

E B

A'•

B C

the property that A commutes with H implies that B = 0. Here E is

the identity in B 1' C ýl ý C is self adjoint.

Then, H defines an extremal spectral function of H

Proof. M. A. Naimark [5] has shown that the spectral function

E (X) of HI defined by a minimal self adjoint extension. H of H1 is

extremal if and only if every bounded self adjoint operator in which

commutes with H and satisfies the condition. (Af, g) (f, g) for all

f, g E is reduced by • The operator A defined in the theorem

has the general form of every bounded self adjoint operator which satisfies

the condition (Af, g) = (f, g) for all f, g E. Further, B =O means

that % 1 reduces A. Thus, if the property that A commutes with H

implies that B = 0, we know that E 1() is extremal by the theorem of

M. A. Naimark.

Remark. If A commutes with H, then A commutes with the

Cayley transform U of H. If we write U in matrix form, U '- (U )
jk
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where. " k .k j ,k = 1, 2-, then the hypothesis that A. commutes

with H implies the validity of the following equations:

BU 21 UB12 B

U12 + BU1 = U11B + U 12 C

BEU + CU =U + U B

11 21 21 22

B'U +CU =U B+IJ C.
12 22 zI 22

4. Extremal spectral functions of symmetric operators with equal

deficiency indicies.

In this section we shall deduce implications of the hypothesis

49(H-) = {0}. Among these implications is the fact that the spectral function

is extremal.

Theorem 14. Let H be a self adjoint extension of the closed

symmetric operator H-1 Suppose that H is defined by H2 and V. Then

the following statements are equivalent:

(1) (H Z) = {0}.

(2) •2(K) ='7(%) = ý2"

(3) J(H) 2 = 0}
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Further, /LQ(H 2 {0}. implies that

(i) mi = n1 ,ie., the deficiency indices of H1 are equal;

(ii) H is minimal.

Proof. That(i) implies (2) is clear from the definition of

"-h' (X) and 7-k (X) . Suppose, on the other hand, that'72 (X) =7 (X)

Then,* (H XE) =a(H -XE) = {0}. If f E J(H H f'- Xf 0

and H f - -f= 0. Hence, ( -X ) f = 0, anrd therefore f= 0. Thus,

rJQ(H ) = {0}, and we have proved that (2) implies (1)

Bytheorem 9, J Z (H2  H) 2 , so that () and (3) are

clearly equivalent.

Suppose, now, that .J(H ) {0}. Then 7 (-) =•b7 (X) and

mz n nZ By theorem 10, (7), m1  n1 . This proves (i) Since

.(H = {0} implies that "7- 2?(-) ='7 2 (X) = 2 and therefore that

S(-K) = o(X) = {0} , it follows from theorems 11 and 12 that H is minimal.
2 2

This proves (ii)

Theorem 15. Let HI be a closed symmetric operator. Let H

be a self adjoint extension of H defined by Hlz and V. If J(H2) = {0}

then the spectral function EI(X) of H1 defined by H is extremal.

Proof. By theorem 14, H is a minimal self adjoint extension of H

Suppose the operator

E B

A'-

B- C
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commutes with H. By theorem 13, we need only show that it follows

that B E 0.

By the remark to theorem 13, we have that BU = U B and
21 12

that U B BU where U N (U, ) is the Cayley transform of H.
21 12 jk

We know, further, that U V on htZl(-) © "-/.2(X) and that
1 2.

U U =V Y n (X) o I '79e2() • Using the fact that

724 (-X) =72(\) = ~-, we obtain, then, that BV' -he (X) BU ')I(X) =
2M .2zj 121 1 21z

U"1B•'Z" (X) C U2 U2 = P"') 21 *2 -) 1 M Since V M M)

21 1 .21 U-) 2 1, 12 1

is dense in 7-,Y = X by theorem 10, and since B is bounded, it

follows, that B ý2 C •i(

Similarly, BV1  1T 21 01) 12?'I .1 U 122

U 12'7)e2 (X V 12 -7? 2 (X) C '72 1 ()., and.ther~fore B M X.

Thus, B 2 C ( z) I But --9 F ' n (X) {o},

-because (7 K l-) and 7>t (K) are the deficiency subspaces of a symmetric

operator. Hence B 0 on 2

Definition 6. Let H be a self adjoint extension of the closed

symmetric operator H1 . H is called a finite dimensional self adjoint

extension of. H if • 2 = § is finite dimensional.

Remark 1. Theorem 15, is a modification~of a lemma of M. A. Naimark

[5]. By the use of a density argument we have dispensed with the assumption

of Naimark of finite dimensionality of the extension.
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Remark 2. By use of theorem 15, M. A. Naimark [5] has shown

that every finite dimensional extension H of a closed symmetric operator

H defines an extremal spectral function of H This implies, in particular,
1 1

that the orthogonal spectral functions of H are extremal.

Theorem 16. If H is a-finite dimensional extension of a closed

symmetric operator H then H must have equal deficiency indices.

Proof. Suppose that H is defined by H and V. Then H is

a Hermitian operator in the finite dimensional space . Z" Since

isom.
U2 : (T) ont (o ) , it follows, that dim c'(-T) = dim Z M

2 2 2

Hence, dim AZn = dim 'Z(X) , i.e., m. n2 . By theorem 10, (7)

mI nI #

In the next section we shall consider symmetric operators with

unequal deficiency indices. The results of the present section show that certain

statements cannot hold when the deficiency indices are unequal. We

present some of these in the following theorem.

Theorem 17. Suppose that H is a self adjoint extension of the

closed symmetric operator H . Let H be defined by H and V.

If m1 t n then
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2 2'

(2) m( # P'n )
2 2.

(3) is not finite dimensional

(4) z(H) O};
2

(5) -L(X) # 0 z and )9/2(X) 0

Proof. (1) follows from theorem 10, (7). (Z) follows from (1)

(3) follows from theorem 16 and the hypothesis mI 0 nI. (4) fo!bws from

(Z) and theorem 14.

We prove (5) as follows: Suppose 2( =K and therefore

0 -(T) = {0}. Since U2 : • f-) (X) , / (X) = {0} and2 2 ' 2 2

therefore "2Yz X) 2 also. Hence, 'hr 2 X) = 7Yz (X) , which contradicts

(2). A similar argument holds if 4z(X) .#

5. Extremal spectral functions of symmetric operators with unequal

deficiency indices

We first introduce the notion of a partial isometry. (See Murray

and von Neumann [Z] .)

Definition 7. A bounded linear operator W in a Hilbert space

is called a partial isometry if it maps a subspace . isometrically onto

another subspace J , while it maps ( onto {0}. . is called

the initial set of W, and J is called the final set of W.
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If W is a partial isometry, then the following statements hold:

(1) If P( •. ) is the operator of orthogonal projection on E and

P(.Z) is the operator of orthogonal projection on , then P(8 =W:W,

P(,!) =WW.

(Z) U is a partial isometry with initial set. and -final set i

(3) As a mapping of .• onto L , U'" is the inverse of U as a

mapping of • onto

Theorem 18. Suppose that W is a partial isometry with initial

set 7'x and final set Let )7 = . Then," =)'

where
isom.(i) )nII o t I

(ii) if fE 7E (D 7?', nlir WP f= 0.

Proof. Let _)ni (W) 7? , i= 0, 1, ....Z Then the following

statements are true:

(a) 7". C "4 for i= 1., 2... This is clear because W is a

partial isometry with initial set and final set 'M

(b) If f E )W where n is a positive integer then W f E n- for
n n-p

p= l, Z; n ,n, and Wpf=0 for p'> n. For,if fE n , f = (W)n g

pnfor some g ' . Since WW = E, Wf = (W)npg 9E'7 <1 p < n.

If p > n, wPf =WP-ng= 0.

(c) If f E , i= 0 ,1 Z... and if n is a positive integer, then
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(W)n f i+n" For, if f E•1., f= (W) g, wheregE 71 . Therefore,

i+ni 1
(W )f f(W) )±fg E 'ni

(d) l . if i4 j. For, suppose i < j and let f )E .,gE g E ..

Then, there exists f1 E Z and gl E such that f ='(W) fl, g= (W) g1 "
.'• " ;: i ' ' j -

Hence, (f,g) =.((W )if (W) g) =(W (W) f* (W ) 91) (fl,(W ) g)=0,

since f EX ((W) J-igI ?• C .
CO<

Now let .71 , = ".. )72 is a subspace of )4. Leti*=1 1

-7? ®'fl . We shall show that -2M and 74 satisfy (i) and (ii)

Since 1=)7'V @J"Z and Z = + ,W and since

isom.
W :m -n t in order to prove (i) it is sufficient to show that

isom. 00

W ono .Suppose f E . Then, f=Z f,, where

2 "1
00

f E"Z' and Wf= Wf.". Since Wf. E ? i-'by (b) ,*we see that

isom.
Wf.•E ? ®TV. Thus, W:7-t t 7• '(i. To show that the map is

00

onto, let gE n 2(7/ Then, g f., where f.E )9Z C If f= W-g
i=0

00

f= ZW Wf, Ok, by (c) . Further, Wf WW g = g. Hence,
i=O

isom.
onto,

00

We now prove (ii). Let f E (3 . Then, f= , fijf'•ýi.

i=0
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By (b), W Lf WPf= Z WPf.. Hence, IIW~fII2 = f IWPifII2

i=O i=p i=p

Z 11f 112 . Thus, lim IIWPfII = 0, and (ii) is proved. #
j=p pro.00

Theorem 19. Let X be a fixed non-real number. Suppose that

H1 is a closed symmetric operator in - 1 with deficiency indices (m, n)

(with respect to X) , m 0 n. Let H be a self adjoint extension of H

defined by H and V, where H is a closed Hermitian operator with

deficiency indices (0, m -n) if m > n and (n - m, 0) if m <n.

Then the spectral function defined by H is extremal.

Proof. Assume that m > n. The case m < n then follows by

interchanging the roles of X and X in theorem 9 and defining H by

H and V

By theorem 1 1 there exists a minimal self adjoint extension

H0 of HI suchthat C i C 0 H 1C HC H 0 C H, and H0 and H

define the same spectral function of H . By theorem 1 2, H is defined1~0.

by V and a Hermitian operator H3 with the same deficiency subspaces as

HZ. Since we can always consider H0 instead of H , if necessary,it

follows that without loss of generality we can consider H to be a minimal

self adjoint extension.

Since 7012(-) = {0 and L we have that if f 2
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Uf e ,(X) C " Hence,

(a) Uif = 0. for all f E Z

Further, Uf = U zzf for all f E Z whence

isom.
(b) U 2 " : UZZ is thus a partial isometry in • 2

with inirial set Z and final set o (X) , while U is a partial isometry

with initial set oC (X) and final set We have that

E P( ) U while P( (X)) =U U
E P( 9 = 2222 2 22 22

Now let A be a bounded self adjoint operator in with matrix

representation

E B

A,

B C

where B: 2 Z: . , C is self adjoint, and suppose that

A commutes with H. By theorem 13, if we can show B - 0, we are through.

By the remark to theorem 13, the following equations hold:

BU =U B =0 and BUZ? = U B.
21 12 2 11

On 7Z C(X), U = V and therefore BV ?n; (X) = BU (UT)= {0}.

Since by theorem 10, V 1 "I(' T) is dense in "4 2M ' BVZ) = {01}, i.e.,

Bp(°•P ()) = 0.

From BUZZ =U B, we have that BUU = U BUZ?, or by (b)
22 11 22 22 11 2'oryb
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BP(-2 (X)) U 1BU2. Adding this with BP(z (X)) =0, we obtain that

B =, U BU . Iterating this equation we obtain that B = UI B(U ,) for
11 22* 11. 22

every positive integer p. Since I III< I, Bfll < 11BI II(U) Pf
11 22

for each f E 2"

isom.
By theorem 18, .(k) = Dh 2 ®- ", where U 11 onto" *I2 U22:",

and if f E ]712(X) ®B'M then Jrn II (U" ) Pf 0 But if
2 p 00 22

isom. isom. isom.onto onto-• • on to_)?
U2 2 :7ýn " -? then U 22 :)7j 1  - and U : onto

This means that U and therefore H is reduced by )n , a subspace of

Since H is a minimal self adjoint extension of

H,1 )Z " = {0}. Hence, z 2= ?1 2 (X) CY9 7, and therefore if f c 2E

lir I(UZ )Pfl = 0. Since IIBfiI < IBIi II (U. -2) Pf I for each f E

and for every positive integer p, it follows that B 0 on 2. #

Remark. Since the operator H in theorem 19 is a Hermitian
2

operator with deficiency indices (0 i m-n) or (n-m, 0), it may seem that

we are dealing with a wider class of operators than the maximal symmetric

operators. That this is not so is shown by theorem Z0.

Lemma. If U is a unitary operator of onto then (U- E)-l

exists if and only if A (U - E) is dense in

Proof. Suppose 'A (U - E) is dense in We wish to show

- ithat (U - E) exists. Suppose (U - E) f = 0. From this equation it follows
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that (U -E)f= 0. Hence, for all g E 0=((U - E) f, g)=

(f, (U --E) g) , i.e., f. I ,(U -E) . Thus, f= 0.
-1

Suppose, on the other hand, that (U - E) exists. We wish

to prove that A (U -E) is dense in . Suppose that 0 = (f,(U-E)g)

for all g E '. Then, 0= ((U'E)f, g) for all g E and therefore (U--E)f = 0.

Hence, (U -E) f=0 and f=0. #

Theorem. Z0. If H is a Hermitian operator with deficiency indices

(0, n) or (n, 0) , then H is -a miximal symmetric operator. If H is a

Hermitian operator with deficiency indices (0, 0), then H is a self adjoint

operator.

Proof. The second statement follows immediately from the first,

since a symmetric operator with deficiency indices (0, 0) is self adjoint.

Suppose that H has deficiency indices (n, 0) . We shall show

that H is a symmetric operator (and therefore maximal symmetric. ) From

this it follows that if H has deficiency indices (0, n), then since -H

has deficiency indices (n, 0) , -H and therefore H is symmetric in this

case also.
isom.

If U is the Cayley transform of H, U: •(-) °nto)• (k) =

Suppose we define W by. the equations:

Wf= Uf for all fEL (e )

Wf= 0 for all f Eb(-)
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Then W is a partial isometry, and by theorem 18 & (-) = ) ' ' "
isom.

where W :'" nto,/,, 1 and if f e ?, (X) 0? 4, nlir Wpf 0. We

isom. isom.

have that U: -2 -onto>, 11 and U: o°nto t f(X) C+-)? '. Since

-1

U is the Cayley transform of H, (U - E) exists by theorem 2 , and

therefore (U - E) ýn " is dense in )> n by the preceding lemma.

We claim further that (U - E)?9? ' is dense in > (-) G)• K

Suppose g E -)2(X-) (j+IX ' and 0 = (g, (U - E)f) for all f E Žr. Letting

g = 9g + g",. where g' E Y(- g)• E )-9 we have that for a.l f E)?j'

0 = (g, (U E) f) ((U - E)g, f) = (U g -g", f). Since U g-g" E )4 '

U g :=g g Therefore, g Ug'= Wg. Iterating this equation, g =W g,

and therefore g = lim WPg = 0. Thus, (U - E) x is dense in

p00

Since (U - E) )'tx is dense in 7T1' and (U - >)n I is dense in

Yý (-,) (& MI , (U - E) 0 (-) is dense in j . Because by theorem Z,

,(H) =•(U - E), H is a symmetric operator. #
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